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The flow from a channel whose outlet is restricted by a flexible inflatable cas-
ing is considered, The problem is solved by mapping the flow region onto the
half-disk of ancilliary variable variation with allowance for the equation of
equilibrium along the flexible contour. A nonlinear integral equation of the
Hammerstein type is obtained for the determination of flow. The region of
existence and uniqueness of that equation, derived by the successive approxi-
mation method, is determined. The obtained solution makes possible the
determination of the inflatable casing shape and of pressure near the outflow
gap.

Flexible elastic skirts fixed along the perimeter of vehicles floating on air cushions
are widely used at present. Such skirts make it possible to maintain a large volume of
air in the cushion while freely deflecting over obstacles encountered in the path of
their motion. The inflatable skirt attached to the vehicle bottom and connected to
the air cushion by an air duct belongs to the type of elastic barriers considered here.

We consider the plane steady flow of a perfect incompressible fluid from an infin-
ite channel (see Fig, 1) whose side ABCK is a flexible mildly sloping casing contain-
ing air at pressure  p;. The casing is attached at point A to the body of the air-
cushion vehicle (hovercraft), Since the outflow gap % is small and the casing connec-
ted to the air cushion by a duct, pressure in the casing along the greater part of A58
is equal to the pressure in the air cushion and the AB part of the casing is a straight
line inclinedto the horizontal at angle (—7) . The flow becomes detached from the
casing at the end-point C of segment BC . The curved segment BC of the cont-
our is tangent at point B to the straight line AB .

The flow past a flexible profile with fixed ends was first considered in [1], and the
model developed there was used in [2] for determining the shape, and the lift and drag
coefficients of a sail at various angles of attack. Below we apply the method propos-
ed in [1, 3] for solving flow problems.

The air cushjon height H, is considerably greater than the outflow gap A (Fig.
1). Hence it is possible to assume that cross section 44 (Fig, 1) is at infinity up-
stream [of the casing], and to reduce the problem to that of outflow from an infinitely
large vessel. One wall of the vessel is horizontal and the other inclined at angle(—Y)
to the horizontal and curved near the outflow gap owing to the difference of press-
ures in- and outside of the flexible casing. Velocity of the idealized flow at infinity
at cross section AA is assumed to be zero, At point D at infinity downstream of
the casing the flow velocity V) is uniform over the whole width of the stream.
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The flow region in the z -plane (Fig, 1) is conformally mapped onto the region
of the ancilliary parametric variable, i.e, the half-disk [,
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Points (in/2, —1, 1) at the boundary of the unit half-disk correspond to points

A, D, and C of the stream, Specification of these three boundary points deter-
mines the uniqueness of the conformal mapping, while variation of the position  of
point B which cotresponds on the circle to parameter { = €i% makes it possible
to obtain various geometric and kinetic characteristics of the flow shown in Fig. 1.
The free surface A is transformed into the half-disk diameter. Arcs DA and AB
of the circle correspond to the straight sections AD and AB and the related arc of
the circle corresponds to part BC of the curved flexible contour.

We assume that the streamline § = O corresponds to the supporting surface
AD, and streamline v = Q corresponds to wall AB, flexible contour BC ,and
the free surface CD ., The region of varation of the complex potential f = ¢ +
i has then the form of the infinite band 0 <Y <C Q (Fig.2). Specifying the co-
mplex potential f = ¢ -+ i\ and the auxilliary function

o=8%+i1=04Liln(V/V,) (1)
as functions of the variable { provides the complete determination ofthe flow, since
in conformity with (1)

df |dz = Vei® = Vye-io = yete-it (2

where V is the absolute velocity at point C at coordinate z, ¥ is the angle between
the velocity vector and the Oz -axis, and 'V, is the absolute value of velocity at
the stream free surface.

The mapping of the band onto the half-disk is defined by formula

f=1iQ +QntIn [(E® + 1)/(8 + 2L + 1)] (3)
from which in accordance with (2) for the geometric coordinates of the flow we obtain
_ 20 ¢ . (-1
= Ve Erh s & @

When point [ lies onthe semicircle (Fig. 1), for instance at points that corres-
pond to the flexible contour BC where [ = ¢i9, its coordinates are determined by
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formula 2= — Q o tgcds
av,, Il +coss (5
Within the half-disk C funcHon © (&) =% - i In(V/ V) must be regular
TV A VhiALS hAN LA B AMMLIAWEL W\ o/ v T ALY /7 V) MUt U iTxguial,

because of absence of singularities in the stream, and real at its diameter which corr-
esponds to the stream free surface where V = V,. Inregion [ along the circle
arc the real part of o ({) is continuous everywhere, except at point 4, where the
direction of velocity is changed by angle (—y) between axis QX and the rectilin-
ear part AB of the taut flexible contour A J5(.

We seek function ® (&) of the form

@ (§) = @, (§) + Q(§) (6)

where Q ({) = @ 4- iT is a function that is analytic in the half-disk, real on its
diameter, continuous along the semicircle, with its real part vanishing on the arc
DAB . Function w, ({) = &, 4 i1, has the same properties, except that at
point 4 of the semicircle its real part is discontinucus, Along arc D4 (for 6 >
n/2) ©,(8) =0, andalongarc ABC (for 0 < n/2) w,(f) = —7. Along
the semicircle function ®,(L) has the same properties as function © (§). The
problem of determination of a function that is analytic in the half-disk, real on its
diameter, with its real part having constant discrete values on the semicircle was sol-
ved in [3]; for { = ei® on the semicircle we have
e>a/2, 8 =0; 0 < a2, B = —y M
To=(y/m)In| A(n/2, o) |
A (2, y) = sin [z — y) /2] /sin [(z + y)/2]
To determine the second term in formula (6) which defines the unknown function
® (§) it is necessary to take into consideration the equation of equilibrium of the
curved flexible part BC of the casing, The equilibrium equation of that part of the

casing which links the pressure drop along the flexible contour and the constant tens-
ioning force T, under condition of the casing inextensibility is of the form

Ap =T, » = db/ds €))

where % is the curvature of the flexible contour at a given point and ds is an ele-
ment of the arc,

Let us determine the pressure drop Ap = p; — p between the pressure in the
casing p; and the pressure exercised by the stream at a point of the flexible contour
BC. Since the inflatable casing is connected to the air cushion region, pressire p;
is equal to the pressure at infinity upstream of the casing.

We use the Bernoulli integral p -+ 1/, pV? = p, , assuming the velocity at
point A to be zero, Since V = V,¢¥, hence

Ap = pVi2e¥*/2
From the equilibrium equation (8) we have
dd/ds = Ap/ T, = pVi\2&*/(2T,) (9)

Since in accordance with (6) @ = Rew = ¥, 4+ @ and for values ¢ < x/2
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which correspond to points of the flexible contour #, = —7, along that contour

% = d® (10

We take the direction along the flexible contour arc from B to C as positive
and obtain from (2) for the element ds of the arc the expression

ds = | dz| = | df | (Ve (11

which links the geometric coordinate 2 of the flow and the complex potential f.
From the condition (9) using (10) and (11) along the flexible contour we obtain

dl /| df | = Y pVae'/T, (12)
Along the flexible contour { = %9 with the use of (3) we obtain
df| = — (Q/n)tg o (1 4 cos o) 'do (13)

Since in the motion from point B to point C along the flexible contour do <
0, hence the last expression is positive.

For the real partof Q = (@ - ;T along the flexible contour from (12) and (13)
we obtain

db/do = — (2nTo)? QpVyet tg o (1 4 cos o)! (14)

For function § = ® 4 iT continuous on the semicircle and real on the dia-
meter the Dini formula, which links the real and imaginary parts (@ and T’ , res-
pectively) of function Q along the circle arc, is valid.

Since it was assumed that for function Q () with o > 0o, Re (Q) =
@ (o) = 0,we can write formula (14) as

Oy
0<o<n, T(0) =—%—S®'(ol)ln|A(01,G)[dci (15)

(1]
Using (2) and the expression for T, in(7) we obtain
V [V, = €01 o eTOIAV/T (m/ 2,0,) (16)

Formulas (14) —(16) yield on integral equation of the form

Oa
T(0) = — xg eTopvn (2, o) In| A on, 0) | sy don 17
0
A = QoV3/(2m*Ty), 0 <L o < 0
which is satisfied by function T (o) along the flexible contour.

Nonlinear integral equations similar to (17) which contain in the integrand expon-
ents of the unknown function were found in earlier investigations dealing with flow
around rigid curvilinear contours [4 —6), The method of successive approximations
was used for solving problems of this kind.

It should be noted that Eq. (17) is a nonlinear integral equation of the Hammer-
stein type to which we shall apply the successive approximation process. The canon-
ical form of the Hammerstein equation is
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b
f@)—§ K@, 9) F (v, ) dy = 0

For the existence and uniquenes of solution of this equation it is necessary that
the following three conditions appearing in [7, 8] are satisfied:

b
x@=[{IK@YPrdy] L6

Function F (z, v) satisfies the Lipschitz condition with respect to the second arg-
ument
| Fz,v) — F(z,m) | < | vy — 05 | m (2)

b
(§ix@m@rds)” = et

For Eq. (17) functions f (z), K (z,y), F (y, f (y)), and % (z) are of the form
fle) =T (o), K(0,0,) = —iln| A (o}, 0)]
F (01, T (01)) = eT@) AV/™ ()2, 0y} tg 61/ (1 -+ cos 07)

23

(@) = 1§ (0] A (03, 0) | doy

Since in the flow region V/V, <{ 1, from (18) we obtain
eTE@AYR (1 /2, 6) < 1 (18)

The fulfilment of the Lipschitz condition by function F (o, T (o)) with respect
to T means the boundedness of its derivative

Fr' (0, T (0)) = eTOAV/#(n/2, o) tg o /(1 + cos 0)
From (18) follows that
Fi' (o, T (o)) < tgo/(1 + cos o) = m (0)

which shows that function F (0, T (0)) satisfies the Lipschitz condition, The third
condition of existence of solution of the Hammerstein type equation as applied to Eq.

{17) assumes the form
T

(S {mﬁ (o) [S (In}A(oy, 0)))2 dcl]} do) <1 (19)

This formula makes it posible to estimate for a given @, the applicability region of
parameter A for which the successive approximation process for Eq. (17) is converg-
ent. Thus, for O, = 86° A < 0.147 and for 0, = 88° A < 0.097.
Successive approximations of the solution of the integral equation (17) are of the
form T
To(0) =0, Tn(0) = —2r\ exp(Tna @AY (F101) X (any
0
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In|A (6, 0)|do,

where 0, is a constant parameter and 0 < ¢ <{ 0, corresponds to points on the
flexible contour,

The calculation method consists of partitioning the interval (0, ), within which
varies parameter ¢, in equal intervals separated by nodes at each of which function
T, (0) is determined by formulas (20). The integrals in (20) are calculated by Sim-
pson’s rule, The integrals which define the geometric coordinates of the flow are
calculated by the same method.

The coordinates of the flexible contour are determined by forrmula (5) and are of
the form

C{n

(.%— ’ —g') = _:TS (nh n2) e-TOAv/R ("g_ y 0) g

1+coss
a

ny, = cos (— ¢y + @ (0)), ny = sin (— vy + @ (0))

where § = Q/ V) is the stream thickness at infinity of the surface, On the semi-
circle diameter which corresponds to the stream free surface function ® () is real
and determined by values of its real part ¢ = ¢, - ¢ on the semicircle. By the
Schwarz — Poisson formula [4] we have
1 ﬂ/.Z
Q@)= \ =7+ (@) 5=

0

(1 —=

2z cos5 + %) do (20

where it has been taken into account that for values of the argument 0 > n/2
that correspond to the horizontal supporting surface 4D (Fig.1) Re o =& =
B¢+ @ (0) = 0. Along the arc (0, g,) that corresponds to the flexible contour
function @ (o) is calculated by integrating formula (14) and, in accordance with
the previously indicated condition for Q (§) = @ + iT ,
Go
@ (0) = mh S eT(O) AV/n (_2£ , 01) e do, (22)

(1 + cosay)
[y

The first and sixth approximations of solutions of Eq. (17) are shown in Fig, 3 for
y = 30°, 0, = 86°, and A = 0.036. Note that from the third approximation fun-
ctions T, (o) are virtually the same,

The shape of the flexible contour is shown in Fig. 4 for several y and the same
values of 0, and A. Curve I in Fig, 4 corresponds to parameters y = 20°, @,
= 86° and A = (.036; values of these parameters for curve 2 in Fig, 4 are the
same as in Fig, 3.

Coordinates of points of the free surface obtained from (5) are of the form

1
2 M) (F ¥ 2¢ Az 23
(o ! o)"(a’ 6>+T§(k1’k2) (1 +23 (1 +F 2) dz (29

ky = cos @ (z), %k, = sin D (z)
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where Z. and Y. are coordinates of the end point of the flexible profile € at
which flow separation occurs, and § is the stream thickness at infinity downstream
of the casing,

As seen in Fig, 4 which shows the shape of the flexible contour near the outflow
gap, the curvature of the contour arc is smail and it is nearly straight, This is expla-
ined by the smaliness of parameter A for which the successive approximation process
is convergent. The inversely proportional dependence of A on the tension force T,
indicates that the flexible contour is under considerable tension.

Dependence of the dimensionless coordtnate y./ 8§ of the point of flow separation
from the flexible contour on the angle of inclination ¥ is shown in Fig. 5 for para-
meters A = 0.03 and o, = 88°

We determine pressure variaion A*p = (p — pg) / (pV,2/ 2) near the outflow
gap of the flexible contour using the Bemoulli integral p +-pV?/ 2= p, + pV,}/ 2,
where pa is the atmospheric pressure, p is the pressure on the flexible contour, and
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formula (16) which defines the ratio ¥/ ¥, , The dependence shown in Fig. 6 relat-
es to the flow pattemn appearing in Fig, 4.
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