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The flow from a channel whose outlet is restricted by a flexible inflatable cas_ 

ing is considered. The problem is solved by mapping the flow region onto the 
half-disk of ancilliary variable variation with allowance for the equation of 
equilibrium along the flexible contour. A nonlinear integral equation of the 
Hammerstein type is obtained for the determination of flow. The region of 

existence and uniqueness of that equation, derived by the successive approti- 

mation method, is determined. The obtained solution makes possible the 
determination of the intlatable casing shape and of pressure near the outffow 

gap* 

Flexible elastic skirts tied along the perimeter of vehicles floating on air cushions 
are widely used at present. Such skirts make it possible to maintain a large volume of 

air in the cushicn while freely deflecting over obstacles encountered in the path of 

their motion. The inflatable skirt attached to the vehicle bottom and connected to 
the air cushion by an air duct belongs to the type of elastic barriers considered here. 

We consider the plane steady flow of a perfect incompressible fluid from an infin- 
ite channel (see Fig. 1) whose side ABCK is a flexible mildly sloping casing contain- 

ing air at pressure pl. The casing is attached at point ~4 to the body of the air- 
cushion vehicle (hovercraft). Since the outflow gap h is small and the casing connec- 
ted to the air cushion by a duct, pressure in the casing along the greater part of AB 
is equal to the pressure in the air cushion and the AB part of the caring is~a straight 
line inclined to the horizontal at angle (-y) . The flow becomes detached from the 
casing at the end-point C of segment BC . The curved segment BC of the cont- 
our is tangent at point B to the straight line AB . 

The flow past a flexible profile with fixed ends was first considered in [ll, and the 
model developed there was used in [2] for determining the shape, and the lift and drag 
coefficients of a sail at various angles of attack. Below we apply the method ptopos- 
ed in [l, 33 for solving flow problems. 

The air cushion height H, is considerably greater than the outflow gap h (Fig. 
1). Hence it is possible to assume that cross section AA (Fig. 1) is at infinity up- 
stream [of the casing], and to reduce the problem to that of outflow from an infinitely 
large vessel. One wall of the vessel is horizontal and the other inclined at angle(Y) 
to the horizontal and curved near the outflow gap owing to the diffcrtnce of Press- 

ures in- and outside of the flexible casing. Velocity of the idealized flow at infinity 
at cross section AA is assumed to be zero. At point D at infinity downstream of 

the casing the flow velocity Vh is uniform over the whole width of the stream. 
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The flow region in the z -plane (Fig. 1) is conformally mapped onto the region 
of the ancilliary parametric variable, i. e. the half-disk I;. 

A D 

Fig. 1 Fig, 2 

Points (k/2, -1, d.) at the boundary of the unit half-disk correspond to points 
A, D, and C of the stream. Specification of these three boundary points deter- 

mines the uniqueness of the conformal mapping, while variation of the position of 
point B which corresponds on the circle to parameter 6 = eiuo makes it possible 
to obtain various geometric and kinetic characteristics of the flow shown in Fig. 1. 
The free surface h is transformed into the half-disk diameter. Arcs DA and AB 
of the circle correspond to the straight &tions AD and AB and the related arc of 
the circle corresponds to part BC of the curved flexible contour. 

We assume that the streamline 9 = 0 correqondr to the supporting surface 
AD , and streamline I) = Q corresponds to wall AB, flexible contour BC , and 
the free surface CD . The region of variation of the complex potential f = v + 
i$ has then the form of the infinite band 0 f 9 f Q (Fig. 2). Specifying the co- 
mplex potential f = rp + i’ll, and the auxilliary function 

0=6-j-h =6+ iln(VIVJ (1) 

as functions of the variable 5 provides the complete determination ofthe flow, since 
in conformity with (1) 

df / dz = Veie = V&e-h = Vke%-** (2) 

where V is the absolute velocity at point C at coordinate z, 6 is the angle between 
the velocity vector and the Oz -axis, and -V, is theabsolute value of velocity at 
the stream free surface. 

The mapping of the band onto the half-disk is defined by formula 

f = iQ + Qnml h HP + 1)/(P + 25 + I)1 (3) 

from which in accordance with (2) for the geometric coordinates of the flow we obtain 

(4) 

When point 5 lies on the semicircle (Fig. l), for instance at points that corres- 
pond to the flexible contour BC where 5 = &‘, its coordinates are determined by 
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formula Q Z=-- 
s 

eiO tgada 
nv?b I + cos 5 (5) 

Within the half-disk 5 fun&on 0 (6) = 6 + i In (V / IJ’~) must be regular, 
because of absence of singularities in the stream, and real at its diameter which corr- 
esponds to the stream free surface where V = V,. In region 1; along the circle 
arc the real part of 0 ( c) is continuous everywhere, except at point A, where the 
direction of velocity is changed by angle (-y) between axis OX and the rectilin- 
ear part AB of the taut flexible contour ABC. 

We seek function 61 (5) of the form 

0 (5) = 00 (5) + Q (6) (6) 

where Q(5) =f-D + iT is a function that is analytic in the half-disk, real on its 
diameter, continuous along the semicircle, with its real part vanishing on the arc 

DAB. Function a0 (C) = 6, + ho has the same properties, except that at 
point A of the amfcircle its real part is discontinuous, Along arc DA (for B > 
n/2) @o(6) = 0, and along arc ABC (for u < 3t / 2) o. ( t) = --y. Along 

the semicircle function a0 ( 6) has the same proparties as function w (f). The 
problem of dctcrmination of a ihnctlon that is analytic in the half4sk. real on its 
diameter, with its real part having constant discrete valuer on the sernicircle~was sol- 
ved in [33; for c = e@ on the semicircle we have 

CJ > n 12, 6, = 0; u /, n/2, 43, = --y (7) 

70 = (Y/Jr) In 1 R(n/2, u) 1 

A (z, y) = sin [(2 - y) / 21 /sin [(z + y) / 21 

To determine the second term in formula (6) which defines the unknown ihnction 
61 ( 5) it is neeer;bary to take into consideration the equation of equilibrium of the 

curved flexible part BC of the casing. The equilibrium equation of that part of the 
casing which links the pressure drop along the flexible contour and the constant tens- 
ioning force To under condition of the casing inextensibility is of the form 

Ap = Tom, x = di-#lds (8) 

where x is the curvature of the flexible contour at a given point and ds is an ele- 
ment of the arc. 

Let us determine the presarre drop Ap = p1 - p between the prarurc in the 
casing pl and the prasure exercised by the stream at a point of the Mxible contour 
BC. Since the inilatablc casing is connected to the air c&ion region, pmesurtp~ 
is equal to the preeaare at infinity upstream of the casing. 

We use the Bernoulli integral p + 1/Z pV = p1 , -ming the velocity at 
point A to be zero. Since V = V&e%, hence 

AP = pv&v2 

From the equilibrium equation (8) we have 

d#lds = Apl To = pV,Wl(=‘o) (9) 

S~ccinaccm&actwith(6) 2)=Reo =eO+@ =dforvalum@<sr/2 
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which correspond to points of the flexible contour 6, = -y, along that contour 

016 = C&D (10) 

We take the direction along the flexible contour arc from B to C as positive 
and obtain from (2) for the element ds of the arc the txprearion 

&= /d.zl = IdfI/(Vp.eT) (Ill 

which links the geometric coordinate 2 of the flow and the complex potential f. 
From the condition (9) using (10) and (11) along the flexible contour we obtain 

da/ 1 df 1 = llz ~~~e?/T~ (12) 

Along the flexible contour 5 = eia with the use of (3) we obtain 

I df I = - (Q/n) tg u (1 + cos a)-Ida (13) 
, 

Since in the motion from point B to point C along the flexible contour db < 
0, hence the last expression is positive. 

For the real part of Q = (r, + fT along the flexible contour from (12) and ( 13) 
we obtain 

dae,/dir = - (21rT,)-~ QpV,et tg a (1 -j- cos a)-’ (14) 

For function $2 = Q, + iT continuous on the semicircle and real on the dia- 
meter the Dini formula, which links the real and imaginary parts ( @ and ?’ , res- 
pectively) of function Q along the circle arc, is valid. 

Since it was assumed that for function Q (5) with U > bO Re (~2) = 
CL, (a) = 0,we can write formula (14) as 

o<u<n, z’(u) =tS’m.(u~~In,A(ol,o),do~ (15) 

0 

Using (2) and the expression for to in (7) we obtain 

v / vfh = eVQ:) = er@l)hv/fi (n / 2, al) 

Formulas (14) - (16) yield on integral equation of the form 

(16) 

aa 

T (u} = - h s eT(oi)Av/n (f , crl) In 1 A (ul, u) 1 (1 Tl; ol) da1 (17) 
0 

which is satisfied by function T (0) along the flexible contour. 
Nonlinear integral equations similar to (1’7) which contain in the i&grand expon- 

ents of the unknown function were found in earlier investigations dealing with flow 
around rigid curvilinear contours [4 -63. The method of successive approximations 
was used for solving problems of this kind. 

It should be noted that Eq. (1’7) is a nonlinear integral equation of the Hammer- 
stein type to which we shall apply the successive approximation process. The canon- 
ical form of the Hammerstein equation is 



100 1. L. Whi 

For the existence and uniqumw of solution of this equation it is necwsary that 
the foilowing three conditiapr appearing in P, 83 an satisfked: 

Function F (5, v) sattsfies the Upachitz condition with respect to the second arg- 
ument 

For 4. W functionr f (a$:), K (z, y), F (y, f (g)), and x (3) am of W form 
f (4 = T (4, R: (u, a,) = - a fn 1 A (01, a) f 

F lCflt T (a) = eT@lj Ay’x (2-c $2, al) tg u1 / (l-i_ ~0s a,) 

qa) = 3’~(lnlh(o,, u) 1)%&l 
0 

see in the flow regiotl V/V, < 1, from (16) we obtain 

e~(“I}Ay/~ (z / 2, s) < 1 WI 

The fUUment of the Lipchitz condition by function F (a, T (a)) with respect 
to T means the bound&was of its dedvativc 

FT’ 6 T @)) = e=(a)Av’z (n/2, a) tg a / (1 + co9 u) 

From (18) follows that 

FT’ (u, T (a)) < tg d(i + cos a) = m (0) 

w&h Z&O- that function F (a, T (u)) sat.isfiu the Lipachitz condition. The third 
~Qlcutfon of cxiatence of solution of the Hammultdn type kcptatton as atd to &. 
(17) amma the form 

~(~{m2Pl [~(JnjAtol,o)~)2~ul]}~u)"'< t 
0 0 

(191 

This formula makes it powWe to estimate for a given bg the appWability region of 
parameter k for whicfi the wcceMv8 qpMmatW pow8 for I$ (13 is converg- 
elk Thut, for uo = 86’ h < 0.147 aad for u. = 88” h < 0.097. 

Succwaive approxfmations of the soWion of the integral wuatPcra 117) ant of the 
form 

To (4 = 0, T,(a) = - h [ exp (T,,+ (al)) AT@ (+ , (~1) x (20) 
0 
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In 1 A (CT,, a) 1 aa1 
where u0 is a constant parameter and 0 < d < u. corresponds to points on the 
flexible contour. 

The calculation method consists of partitioning the interval (0, n), within which 
varies parameter o, in equal intervals separated by nodes at each of which function 
T, (a) is determined by formulas (20). The integrals in (20) are calculated by Sim- 

pson’s rule. The integrals which define the geometric coordinates of the flow are 
calculated by the same method. 

The coordinates of the flexible contour are determined by formula (5) and are of 
the form 

a0 

(+-, +) = +s (nl, n2) e-T(a)hv/fi (+, - 0) 1 :“,,“, a au 
a 

n, = cos (- y + 0 (u)), n2 = sin (- y + CD (a)) 

where 6 = Q/V h is the stream thickness at infinity of the surface. On the semi- 
circle diameter which corresponds to the stream free surface function 0 ( 5) is real 
and determined by values of its real part 6 = 6, + @ on the semicircle. By the 
Schwarz - Poisson formula 141 we have 

X(2 

0 (5) = + \ [- y + CD (o)] (I --? (I-222COhd + zz) da 
0 

(21) 

where it has been taken into account that for values of the argument U > x / 2 
that correspond to the horizontal supporting wrface AD (Fig. 1) Re o = 6 = 
6, -t @ (U) = 0. Along the arc ((I, UO) that corresponds to the flexible contour 

function 0 (u) is calculated by integrating formula (14) and, in accordance with 
the previcusly indicated condition for Q ( 5) = <D + iT , 

( 22) 

The first and sixth approximations of solutions of Eq. (17) are shown in Fig. 3 for 
y = 30”, IS~ = 86”, and k = 0.036. Note that from the third approximation fun- 
ctions T,, (u) are virtually the same, 

The shape of the flexible contour is shown in Fig. 4 for several y and the same 
values of u0 and h. Curve 2 in Fig. 4 corresponds to parameters y = 20”, U,, 

= 86”, and h = 0.036; values of these parameters for curve 2 in Fig. 4 are the 
same as in Fig. 3. 

Coordinates of points of the free surface obtained from (5) are of the form 



Fig. 4 

Fig. 6 

where zc aad YE are crrordinatts of the end point OF the Flexible pmfile C at 
which flow sqlzration occurs, and 8 is the stream tbiclmees at infinity dOwn&mam 

of the casing. 

As seeu in Fig. 4 wtrich shows the rhnpt of the f&&b& contour near the au&flow 

gap, the UWatun Of tk coutour aM: is small anb it is “early straight, Tbki Is *%a- 
ined by the smallness of parameter x for which the succ~ve appmirnation pmcess 
is coovexget& The inversely propar%fooal dcpmdwt of h on the tension force i”@ 
irsdicztw &2t the iWd!sie ceribm b under s.mnskk~~~ tension. 

Dependaace of tb dimutri&w coardfnate gc f 8 of the point of fl0w sqMta6On 
fmm the flexlb& c~ntaut an tile angle Of inclination Y is shown in FE& 5 fos prra- 

meters b =p 0.03 and u, = 88”. 
We det.erm.tne pnratre variatfon dfp - fp - paf / @V,” f 2) ueal Me Outflcrw 

gap of the flaribfe contOur using the BunauW integral p C pv2 I 2 - pa t pV&? i 2, 
where pa is the atmospheric prea~re. P is the prtrnrre on the flexible contO% and 
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formula (16) which defines the ratio I’ I V, , The dependence shown in Fig. 6 relat- 
es to the flow pattern appearing in Fig. 4. 
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